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A B S T R A C T   

Background: One of the challenges facing accurate diagnosis and prognosis of Alzheimer’s disease, beyond 
identifying the subtle changes that define its early onset, is the scarcity of sufficient data compounded by the 
missing data challenge. Although there are many participants in the Alzheimer’s Disease Neuroimaging Initiative 
(ADNI) database, many of the observations have a lot of missing features which often leads to the exclusion of 
potentially valuable data points in many ongoing experiments, especially in longitudinal studies. 
New methods: Motivated by the necessity of examining all participants, even those with missing tests or imaging 
modalities, this study draws attention to the Gradient Boosting (GB) algorithm which has an inherent capability 
of addressing missing values. The four groups considered include: Cognitively Normal (CN), Early Mild Cognitive 
Impairment (EMCI), Late Mild Cognitive Impairment (LMCI) and Alzheimer’s Disease (AD). Prior to applying 
state of the art classifiers such as Support Vector Machine (SVM) and Random Forest (RF), the impact of imputing 
(i.e., replacing) data in common datasets with numerical techniques has been investigated and compared with 
the GB algorithm. Empirical evaluations show that the GB performance is highly resilient to missing values in 
comparison to SVM and RF algorithms. These latter algorithms can however be improved when coupled with 
more sophisticated imputation technique such as soft-impute or K-Nearest Neighbors (KNN) algorithm assuming 
low extent of data incompleteness. 
Results: The classification accuracy has been improved by up to 3% in the multiclass classification of all four 
classes of subjects when all the samples including the incomplete ones are considered during the model gener-
ation and testing phases. 
Comparison with existing methods: Unlike other methods, the proposed approach addresses the challenging mul-
ticlass classification of the ADNI dataset in the presence of different levels of missing data points. It also provides 
a comparative study on effects of existing imputation techniques on a block-wise missing data. Results of the 
proposed method are validated against gold standard methods used for AD classification.   

1. Introduction 

Alzheimer’s disease (AD) is one of the most prevailing causes of 
dementia, which leads to memory loss and other cognitive impairments. 
This disease is accountable for 60–80% of dementia cases (Barnes and 
Yaffe, 2011). Accurate AD diagnosis and prognosis is of critical impor-
tance, especially for detecting the early stages of the disease through 
more precise delineation of the Early Mild Cognitive Impairment (EMCI) 
group from the cognitively normal (CN) control group, and for 
discriminating possible converter mild cognitive impaired patients from 
non-converter subjects (Cuingnet et al., 2011; Petersen and Morris, 
2005). 

Early diagnosis allows for the planning of early treatment and ther-
apeutic interventions, and plays a significant role in providing subject- 
specific care, predicting disease progression, and gauging the rate of 
decline and severity of impairment (Moradi et al., 2015; Izquierdo et al., 
2017; Dickerson et al., 2009). The more recent studies have devoted 
great efforts for the early detection of AD by developing interesting al-
gorithms for delineating the prodromal stage of mild cognitive impair-
ment (MCI) with varied and competing classification results (Suk et al., 
2014; Landau et al., 2010; Jagust, 2018). Most researchers agree that the 
current accuracy achieved, especially for classifying the challenging 
EMCI vs. CN groups remains below an acceptable standard for the 
medical field considering the irreversible nature of the disease. This 
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error in classification is of course further influenced in the negative 
when performing the more realistic multiclass classification (assuming 
all groups as it should be) rather than a presumed binary classification 
(when only two classes are considered at a time). Moreover, when 
dealing with multimodal and multiclass classification, researchers often 
contend with the missing data challenge, especially when longitudinal 
studies are considered. Lack of sufficient data with complete samples for 
all the subjects considered in a study whether cross-sectional or longi-
tudinal is an inherent problem of any clinical trial. This challenge of 
missing data continues to hinder the needed progress for understanding 
this challenging and complex brain disorder (Jagust, 2013). 

In the medical field, incomplete samples in longitudinal studies are 
frequent. This is largely due to patients who miss taking some of the tests 
at some different timepoints of a study. Generally, missing values occur 
for a variety of reasons, including subjects that miss appointments, 
subjects that completely drop out from the study, budget limitation or 
when dealing with data with insufficient or incompatible resolutions or 
experience image corruption, etc. Troyanskaya et al. (2001); Lo and 
Jagust (2012). Many algorithms simply discard subjects with missing 
modalities from further consideration or, in the simplest case, they just 
replace the missing data with zero values or with a mean average of the 
attribute, which still results in a loss of valuable information. Accuracy 
in AD diagnosis and prognosis could be improved if the missing pa-
rameters can be more precisely estimated from the rest of the available 
data through reliable machine learning techniques, rather than through 
standard substitution techniques (Belger et al., 2016). Added attention is 
needed when different data modalities often have nonlinear and 
complicated correlations, which impedes the prospects for correct 
estimation. 

These challenging issues have led to a new line of research that fo-
cuses on developing more realistic and more sophisticated techniques to 
resolve experimental issues involving incomplete samples. This line of 
research is generally divided into two main approaches: the first 
approach attempts to synthesize missing modalities from the remaining 
ones with the help of various techniques that include maximum mean 
discrepancy based multiple kernel learning (Zhu et al., 2017), cascaded 
residual autoencoder (Tran et al., 2017), 3D convolutional neural net-
works (Payan and Montana, 2015) and generative adversarial networks 
(GAN) (Nie et al., 2017; Xiang et al., 2018). Regarding the application of 
GAN in medical imaging, Cohen and his colleagues have pointed out that 
synthesized medical images may result in misdiagnosis due to the dis-
tribution matching losses that arise from the process of matching an 
image in the input domain to an image in the target domain while 
preserving the source distribution (Cohen et al., 2018). The second 
approach attempts to impute missing values by applying various nu-
merical techniques such as simple Mean substitution,1 Mode and 
K-Nearest Neighbor (KNN) impute (Campos et al., 2015; Luengo et al., 
2012; Huang et al., 2016). Authors in (Xiang et al., 2018; Ritter et al., 
2015) extracted a complete subset of features from the actual dataset 
and synthesized the missing values randomly to analyze the power of 
some imputation methods, but they have not tested the algorithms on 
different patterns of missing values in real incomplete datasets, which 
may actually have completely different patterns from those that were 
randomly synthesized. They also overlooked the fact that some of the 
proposed imputation methods assume that the data have a Gaussian 
distribution, which may not be the case for every dataset. Moreover, 
some of these approaches do not address the block-wise missing patterns 
of data in the relatively small dataset size of the AD group. When the 
data is multimodal in nature acquired through MRI, PET, CSF, and 
cognitive scores, to name a few, each modality creates multiple features 
in each sample. When a modality is missing for a subject then none of 
those features from that single modality will be available for that sample 

leading to a missing block of information called block-wise missing 
pattern. 

Therefore, to the best of our knowledge, none of the research studies 
so far have done a comparative study on effects of existing imputation 
techniques on a block-wise missing dataset of Alzheimer while incor-
porating a huge sample size from various modalities to check the effects 
of large size data on imputation tasks. As an additional task, we have 
also considered the challenging multiclass classification of the ADNI 
dataset in the presence of a high number of missing points. Moreover, 
there are several new imputation techniques which have never been 
deeply studied within this scope of work. 

Considering the importance of the early detection of the prodromal 
stage of AD, the first objective of this paper is to analyze the classifica-
tion power of Gradient Boosting (GB) technique on a four-way classifi-
cation. The four groups included Cognitively Normal controls (CN), 
Early Mild Cognitive Impairment (EMCI), Late Mild Cognitive Impair-
ment (LMCI) and Alzheimer Disease (AD) acquired from a large multi-
modal heterogeneous dataset pulled from various cites with missing 
data, which include ADNI1, ADNIII and ADNIGO. The recent release of 
ADNI data which discriminate early, and late MCI patients motivated us 
to focus on multiclass classification between the four groups of subjects 
rather than using binary classification of two groups of subjects at a 
time. The assumption here is that binary classification lacks the gener-
alization power when introducing new sample data with no prior 
diagnosis label. The challenge of discriminating the EMCI group from 
LMCI has not yet been well studied due mainly to the absence of 
adequate data for those two classes. The second objective of this paper is 
to represent the classification potential of GB and its potential to handle 
incomplete data sets. Experimental evaluations show that SVM is unable 
to work with incomplete sample data, GB is capable of handling missing 
values with no need for any additional preprocessing. 

We also describe the performance dependency of the various state- 
of-the-art imputation techniques on the patterns of missing data. For 
this purpose, we investigated the performance of a group of imputation 
techniques on two separate sets of synthesized incomplete data with 
random-wise missing values and real incomplete data with block-wise 
missing values. Results reveal the shortcomings of imputation tech-
niques in the real case of block-wise missing data estimation. Despite 
few papers that attempted to proceed in this direction (Campos et al., 
2015; Jiang et al., 2016), to the best of our knowledge, this work is the 
first one that provides an extensive comparative study over real, 
incomplete heterogeneous multimodal dataset of Alzheimer with the 
four groups: CN, EMCI, LMCI, and AD. 

The remainder of this paper is organized as follows: Section II de-
scribes the dataset and the preprocessing steps that were undertaken. 
Section III defines the methods that have been investigated and imple-
mented in this study. Section IV provides the experimental results and 
related analyses. Finally, Section V closes with the discussion and 
conclusion. 

2. Dataset and preprocessing 

Data used in the preparation of this article were obtained from the 
Alzheimer Disease Neuroimaging Initiative (ADNI) database (adni.loni. 
usc.edu). ADNI was launched in 2003 as a public-private partnership led 
by Principal Investigator Michael W. Weiner, MD. The primary goal of 
ADNI has been to test whether serial magnetic resonance imaging (MRI), 
positron emission tomography (PET), other biological markers and 
clinical and neuropsychological assessments can be combined to mea-
sure the progression of mild cognitive impairment (MCI) and Alz-
heimer’s Disease (Landau et al., 2010). 

ADNI data is processed with a standard pipeline resulting in a large 
matrix of patients and their test measurements. Patients are arranged in 
rows and each test result is ordered as a column. In this paper, we used 
various groups of biomarkers including CSF, MRI, PET, DTI, Genetics, 
and neuropsychological tests, which are derived from ADNI database. 

1 Since data is normalized around the center in this study, mean substitution 
in this case is the same as zero fill. 

M. Aghili et al.                                                                                                                                                                                                                                  



Journal of Neuroscience Methods 375 (2022) 109582

3

The detailed list of biomarkers is provided in Table 1. Diagnosis labels 
consist of Cognitively Normal (CN), Early Mild Cognitive Impairment 
(EMCI), Late Mild Cognitive Impairment (LMCI) and Alzheimer’s Dis-
ease (AD). 

The dataset considered for this study consists of 1627 subjects, 
among them are 413 CN, 312 EMCI, 565 LMCI and 337 AD subjects, 
which have been examined for up to an 11-year period with visits 
scheduled every six months. However, inherent to all longitudinal 
studies, many of these subjects tend to miss few to many of these visits 
due to dropout, relocation of patient, scheduling issues or health-related 
reasons. Some of them have only a couple of visits or time points 
throughout the duration of the study. A comprehensive set of 41 bio-
markers were selected at the end, as indicated in Table 1. 

Imputation techniques, like multiclass classification or prediction, 
tend to perform better when relatively large datasets are available, 
providing more samples for training the model in search of an optimal 
classifier. We considered each patient-visit to be a separate sample to 
augment the data size, help the imputation process and augment the 
prospects for establishing or modeling an optimal classifier that gener-
alizes better. However, to avoid data leakage, we carefully split the data 
based on patient ID and made sure that samples of the same patient do 
not appear in both training and testing phases. It is worth mentioning 
that even if the subject status does not change between successive time 
points, subject-sample vector at various time points tends to be slightly 
different from each other due to changes in imaging and other per-
formed tests. 

In contrast to most studies that handle the problem of missing data, 
either by excluding the patients with incomplete test results or by 
restricting the study to a single modality, we tried to solve the problem 
by introducing an algorithm which can handle the missing values 
naturally. In a parallel experiment, we integrate an imputation stage to 
two other classifiers of RF and SVM to check if this adds any robustness 
to the classification algorithms. Furthermore, in contrast to most studies 
which work on a dataset from a specific single source, current ADNI-
MERGE dataset is pulled from multiple cites which adds heterogeneity 
to the data and makes the classification process even more challenging. 
Pre-analysis of the dataset indicates that based on all the biomarkers 
considered in this study, there was not a single record that did not have 
one or more measurements missing. The number of missing values 
altogether for all data samples and throughout all the biomarkers is 
equivalent to 46% of the entire dataset. This clearly highlights the extent 
of the missing data challenge researchers face when considering longi-
tudinal studies. It also places research groups in the predicament of 
choosing only those datasets with the complete set of measurements, 
ending up with a much smaller dataset and perhaps less statistically 
meaningful. The best option is to consider the entire data set and to find 
effective ways to impute the missing data with the aim to preserve the 
statistical and clinical meaningfulness of the data that took so much 
effort and so many years to acquire. 

Since feature normalization is required for many algorithms, 

especially in the cases of SVM and K-nearest neighbors, datasets are 
centered and normalized. As there are many missing values in the 
dataset, before normalization, missing values are masked. Hence, the 
convergence time was reduced dramatically, and classification accuracy 
is improved, especially when using SVM. 

3. Experimental methods 

We investigated the outcomes of weighted K-Nearest Neighbors 
(KNN) (Zhang, 2012) Singular Value Decomposition (SVD) based 
method (Golub and Reinsch, 1971), Soft Impute (Mazumder et al., 
2010), Matrix Factorization (Paatero and Tapper, 1994) and Mean 
average, combined with three state of the art classification algorithms; 
Support Vector Machines (Suykens and Vandewalle, 1999), Random 
Forest (Liaw and Wiener, 2002), and Gradient Boosting (Ogutu et al., 
2011; Friedman, 2001; Chen and Guestrin, 2016). To analyze the 
methods precisely, we have repeated the experiments with varying 
percentages of missing values. Hyper parameters were carefully 
adjusted by performing an exhaustive grid search to reach the best 
performing classifier. In this section, we briefly overview the methods 
that have been exploited in this study. All the methods are implemented 
using Fancy-impute libraries as detailed in section IV. 

The K-Nearest Neighbors imputation method selects subjects with 
similar feature sets to the subject that has missing values. For example, if 
a sample S has a missing value in feature Q, this method would select all 
the subjects which are most similar to S and have that feature Q. It gives 
a weight to each retrieved sample based on the degree of similarity and 
then calculates the weighted average as the estimated value for the 
missing target in sample S. For the similarity measure, various metrics 
can be utilized such as Pearson correlation, Euclidean distance, and 
variance minimization. In our study we used the Euclidean distance as 
the similarity measure of the data (Zhang, 2012). 

Matrix Factorization method was first introduced in (Paatero and 
Tapper, 1994) and since then it has been used in many applications such 
as collaborative filtering and missing value imputations. This technique 
attempts to split the original large matrix of X ∈ Rn∗m, in which n is the 
number of subjects and m is the number of features, into two matrix 
components of smaller dimensions as a function of a k factor, 
W ∈ Rn∗kand H ∈ Rk∗m. Since the original matrix of samples and features 
has a lot of missing values, the sparsity constraint is imposed on matrix H 
which results in the following minimized formulation: 

W,Hmin
1
2

[⃦
⃦X − WHT

⃦
⃦2

F + α‖W‖
2
F + β‖H‖

2
F

]
(1)  

subject toW,H ≥ 0  

with αandβ being the regularizing constants and ‖‖2
F defining the Fro-

benius Norm. To reach the global minima, the mentioned minimization 
problem is solved using gradient descent (Paatero and Tapper, 1994). 

The Singular Value Decomposition (SVD) method has been proposed 
in (Suykens and Vandewalle, 1999), which is another approach for 
estimating the missing data iteratively. Assume that X is a set of 
observed elements and Xr as a subset of X. SVD-impute applies singular 
value decomposition of matrix X to get orthonormal patterns of U and V. 
The approximation of Xrcan then be derived by a linear combination of 
these patterns through JJDJVr

JwhereJJ, DJ and Vr
J are orthogonal. Then, 

the SVD imputation of any matrix X can be implied by solving the 
following problem: 

Min
⃦
⃦X − mr

i − UJDJVr
J

⃦
⃦ (2)  

where mr
i is the mean of the ith row and ‖‖ is a sum of squared values of 

all non-missing elements. In this method, we start the procedure by 
substituting the missing values in X by the means of all non-missing 
values in each row. Then (2) will be solved for a new set of matrices 
of U, V and D which produces a new approximation of X. This step will 

Table 1 
Biomarkers Used in this Study.  

Source Features 

Cognitive 
tests 

Rey Auditory Verbal Learning Test (RAVLT Immediate, RAVLT 
Learning, RAVLT Forgetting, RAVLT Perc Forgetting), Functional 
Activities Questionnaires (FAQ), Everyday Cognition (Ecog) scales: 
(EcogPtMem, EcogPtLang, EcogPtVisspat, EcogPtPlan, 
EcogPtOrgan, EcogPtDivatt, EcogPtTotal, EcogSPMem, 
EcogSPLang, EcogSPVisspat, EcogSPPlan, EcogSPOrgan, 
EcogSPDivatt, and EcogSPTotal) 

MRI Ventricles, Hippocampus, WholeBrain, Entorhinal, Fusiform, 
MidTemp, ICV, FLDSTRENG, FSVERSION 

PET FDG, PIB amyloid, AV45 amyloid, CDRSB 
Genetic APOE4 
Demographic AGE, Gender, Education 
CSF Ab1, t-tau, p-tau  
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be repeated until the difference between the Xi+1and Xi meets the 
optimal stopping criteria (Golub and Reinsch, 1971). 

Soft Impute has been proposed in (Mazumder et al., 2010) as a more 
efficient algorithm than the original iterative SVD which addresses the 
high computational cost of iterative SVD for large matrices. However, it 
computes a low-rank SVD of a dense matrix repetitively. This allows the 
regularization path of solutions to be computed efficiently on a grid of 
regularization parameters. Rank reduction and shrinkage is performed 
simultaneously in soft impute in a single operation. More precisely, this 
algorithm solves Eq. (3) to deduce and replace the missing values. Then 

the SVD imputation of any matrix X can be implied by solving this 
problem: 

min
Z

1
2

‖W − Z‖2
F + λ‖Z‖ (3)  

where λ is a regularization parameter. This algorithm initializes the 
missing values with zero and keeps track of the old Z and replaces the 
Znewwith Sλk

(
PΩ(X) +P⊥

Ω
(
Zold) ), until it hits the exit or stop criteria 

Fig. 1. Effects of imputation methods coupled with three classifiers at different 
degrees of random missing values (a) Random Forest (b) Support Vector Ma-
chine (c) Gradient Boosting on 4-way multiclass classification (CN, EMCI, LMCI, 
AD) of the subjects. Fig. 2. The improvement achieved by cascading different imputation tech-

niques with classification methods (a) Random Forest (b) Support Vector Ma-
chine (c) Gradient Boosting on 4-way classification of subjects. 
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defined below: 
⃦
⃦Znew − Zold

⃦
⃦2

F
⃦
⃦Zold

⃦
⃦2

F

< ε (4)  

{

PΩ(X)(i, j) =
{

Xij,&if (i, j) ∈ Ω
0 ,&if (i, j) ∕∈ Ω

}}

(5) 

PΩ(X) of dimension m*n is a projection of matrix X onto the 
observed entries. P⊥

Ω(X) is a complementary projection such that 
PΩ(X) +P⊥

Ω(X) = X. The above low-rank optimization models are usually 
used for collaborative filtering, nonetheless they have application in 
other domains such as missing data imputation, clustering and data 
retrieval. 

Support Vector Machines (SVM) remain a robust statistical method 
first introduced in the early 1990 s as a nonlinear solution for regression 
and classification (Suykens and Vandewalle, 1999). This technique has 
been proven to have superior performance in addressing various prob-
lems due to its generalization abilities, robustness against noise and 
other forms of interference, and its computational efficiency is compa-
rable to several other methods. Support vector machines separate two or 
more classes by finding an optimal hyperplane with a maximized margin 
known as support vectors. Multi-class SVM problems can be solved by 
decomposition into a predefined number of binary problems. Two 
known approaches are one-versus-rest and one-versus-one. One--
versus-rest classifiers are composed of k separate binary classifiers in 
which each classifier will be trained using the data of its own class with a 
positive outcome and the data from all other classes as negative 
outcome. One-versus-one approach is composed of all pairwise indi-
vidual classifiers where each test example will be fed into all individual 
classifiers and the data is assigned to the class which yields the highest 
winning score (Ogutu et al., 2011). 

Random Forest (RF) is a type of supervised machine learning algo-
rithm which is an ensemble of multiple decision trees. For each tree in 
the forest a bootstrap sample of data is taken to create various input 
datasets so that each tree will be fit with a different set of samples. Then 
the data will be split based on a selection of random variables. The best 
split will iteratively be selected based on the impurity measure. The 
whole process will be repeated in building several decision trees to 
complete the random forest model. Each new data point will be fed 
iteratively into all generated trees and their outcome will be averaged to 
form the final prediction of the random forest (Liaw and Wiener, 2002). 

Gradient Boosting (GB) is a powerful supervised machine learning 
technique commonly used to solve regression, multiclass classification, 

and ranking problems. This technique has a sequence of weak tree 
learners which are trained to fit a given model K such that each learner 
will improve the prediction accuracy of the previous one by minimizing 
the multiclass logistic likelihood J between the pseudo residuals using 
the following formula: 

J =
∑

i
L(yi,K(xi) ) (6) 

In which yi is the target value and K(xi) is the value obtained from the 
predicted model. GB is robust to redundant data and has the inherent 
ability to handle missing data. During the training phase, GB computes 
the optimal split direction for every feature, therefore it decides if 
missing values should go to either right or left node of the tree to 
minimize the loss function. Hence, we were interested in using Gradient 
Boosting in our study to examine and test the embedded imputation 
strength of this algorithm (Ogutu et al., 2011; Friedman, 2001; Chen and 
Guestrin, 2016) against the proposed cascaded imputation-classification 
method. 

4. Evaluation on subjects 

The experiments conducted proceed through multiple steps. At the 
first step, 70% of the data is randomly selected for training, 10% used as 
the validation set, and the remaining 20% is used in the testing phase. As 
one subject may be tested multiple times and appears under various 
sample ID, the data split has been performed based on the unique subject 
ID instead of the sample ID. In this way, the chance of visiting similar 
samples of the same patient in both the training and testing phases is 
removed. The data was normalized by subtracting the mean value and 
then dividing by the standard deviation prior to imputation. A mask was 
generated to cover the Not Available (NA) or missing values when 
needed. 

The next step involved estimating the missing data using different 
imputation techniques including KNN impute, iterative SVD, Matrix 
Factorization, Soft Impute and Mean averaging. After that, the classifi-
cation of subjects is performed. We implemented the code in Python 
using Scikit-learn module for machine learning (Pedregosa et al., 2011) 
and Fancy-impute libraries. While other classifiers were more robust 
when non-normalized data were used, SVM accuracy improved 
dramatically with normalization. 

We excluded the diagnosis labels (CN, EMCI, LMCI, AD), and some of 
the highly correlated cognitive test scores such as the Mini Mental State 
Examination (MMSE), Clinical Dementia Rating scale (CDR) as well as 
the Alzheimer’s Disease Assessment Scale-Cog (ADAS-Cog) from the 
training phase to avoid introducing any bias in the the results. Moreover, 
comparative assessments to other studies will be fair only if similar 
features/modalities and similar datasets are used. In this study, impu-
tation has been done across training, validation, and testing data sepa-
rately prior to classification. Each classifier has been adjusted through 
an exhaustive grid search with cross validation to achieve optimal ac-
curacy. Tuning parameters for the SVM method consisted of a Gaussian- 
based radial basis function (RBF) kernel with Gamma and C parameters 
set to 0.0001 and 100, respectively. For RF, the maximum number of 
features at each node was set to 10, the minimum number of samples 
required in each leaf was set to 3, and the minimum number of samples 

Table 2 
Correlation coefficient of datapoints in original data versus predicted via 
different imputation techniques with varying percentage of random missing 
values.  

Method / Missing % 1% 20% 40% 60% 80% 

KNN 0.999 0.998 0.995 0.993 0.988 
Soft Impute 0.999 0.998 0.986 0.888 0.727 
Matrix Factorization 0.999 0.999 0.997 0.994 0.993 
SVD 0.999 0.980 0.948 0.786 0.589 
Zero fill 0.998 0.838 0.751 0.634 0.310  

Table 3 
Comparison of (a) Random Forest (b) Support Vector Machine (c) Gradient Boosting coupled with five imputation techniques* .  

Classifier Gradient Boosting Support Vector Machine Random Forest  

Accuracy Precision Recall Accuracy Precision Recall Accuracy Precision Recall 

KNN 59.21 60.50 57.10 58.89 51.80 55.29 53.65 56.82 51.61 
Soft Impute 65.03 63.12 63.00 58.88 54.61 57.91 57.54 58.10 55.65 
Matrix Factorization 62.10 60.65 59.00 57.48 48.92 56.34 55.61 57.02 53.10 
Iterative SVD 62.20 62.27 62.20 58.83 60.49 56.88 58.18 55.91 56.41 
Mean 62.12 63.32 62.20 57.70 52.58 55.47 60.56 60.59 59.65  
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required to split an internal node is set to 2, with a Gini index for criteria 
of quality split. For the GB method, the maximum depth of individual 
regression estimators was set at 2, number of features at 25, subsample 
used for fitting learner at 14, minimum number of samples at 10, and 
number of boosting stages at 28. 

To attain a robust performance prediction, we repeated all experi-
ments over 30 trials and the metrics across all trials have been averaged. 
Besides providing accuracy, we also provide performance evaluation 
metrics that include precision, recall, and Receiver Operating Charac-
teristic curve (ROC) which is created by plotting the true positive rate 
(TPR) against the false positive rate (FPR) at various thresholds. In the 
following section, the experiment is explained with more details. 

4.1. Synthetic missing data handling 

To have a clear understanding of the effect of imputation techniques 
on diverse patterns of missing values, performance of each technique is 
evaluated on a complete extracted version of the original dataset where 
only observations with no missing values were retained. Subsequently, 
we randomly deleted 1%, 20%, 40%, 60%, and 80% of the data to 
investigate the best combination of classification-imputation pairs that 
achieves an optimal classification accuracy. Experimental evaluations 
prove that the SVM and RF classifiers, when coupled with an imputation 
method like Matrix Factorization, Soft Impute or KNN produces the 
highest accuracy in multiclass classification as compared to mean sub-
stitution in almost all percentages of missing values for up to 80%. From 
the results shown in Fig. 1, there is enough evidence that selecting an 
appropriate imputation technique can improve the accuracy of SVM and 
RF in case of missing data with a random pattern. However, GB achieves 
relatively equivalent result with or without the imputation techniques 
owing to its innate ability for handling missing data. 

Fig. 1. also demonstrates that from low to middle percentage of 
random missing values, GB exhibits the highest classification accuracy, 
regardless of the imputation technique used. To illustrate the effec-
tiveness of different imputation techniques in the presence of various 
amounts of synthesized missing data, we calculated the accuracy 
improvement for each classifier as shown in Fig. 2. For a low percentage 
of synthesized random missing values, the highest improvement in ac-
curacy is achieved by RF coupled with Matrix Factorization technique as 
shown in Fig. 2. (a) which happened at 20% of missing data. Addi-
tionally, this experiment shows that for a high percentage of missing 
values, none of the imputation techniques can estimate patterns of 
missing data correctly. 

All these experiments have been repeated 30 times and the standard 
deviation in accuracy improvement of RF and SVM coupled with 
imputation techniques over the 30 random runs was mostly between 2% 
and 4% over the different percentages of missing values. Higher stan-
dard deviation values of 5% and 6% resulted with the GB method which 
seemed not to gain in accuracy when coupled with any imputation 
technique. This indicates that GB may not benefit as well from impu-
tation techniques, since it intrinsically addresses the missing values in 
the way it is originally conceived. 

The coefficient of correlation between the original dataset and what 
is generated by different imputation techniques have been calculated to 
give a fair ground for comparing the performance of the imputation 
techniques when they address the various percentages of missing data. It 
can be observed from the results shown in Table 2 that as the percentage 
of the missing values increases, the covariance coefficient declines, 
while KNN and Matrix Factorization have shown the highest correlation 
coefficient overall. 

4.2. Original Missing Data Handling 

We repeated our experiments on the original incomplete dataset, 
where almost 40% of the data is missing and the pattern considered in 
this case is not random but is assumed block-wise missing (Lo and 
Jagust, 2012). Considering the measurements summarized in Table 3, it 
can be observed that GB method yields the best results over all combi-
nations of classifiers and type of value substitution for GB can be 
observed through the ROC curves in Fig. 3. The ROC curves of the 
classifiers represent the difficulty in delineating the four classes (CN, 

Fig. 3. Comparison of ROC curve for three classifiers (a) Random Forest with 
mean imputation (b) Support Vector Machine with mean imputation (c) 
Gradient Boosting without imputation technique in a 4-way classification 
of subjects. 
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EMCI, LMCI, AD) in a real comprehensive dataset. Among all, GB re-
cords the highest AUC for all the classes AUC = 0.89, 0.86, 0.84 and 
0.78 for AD, CN, EMCI and LMCI respectively while RF with AUC 
= 0.87, 0.84, 0.82, 0.74 has the second place and SVM with 0.84, 0.82, 
0.80, 0.74 shows a somewhat lower performance for all the classes. 
Fig. 3. reveals that EMCI and LMCI separation is the most difficult task 
for all the three classifiers. 

Based on the missing data patterns and quantity of the missing data, 
imputation-classification pairing can perform better than simple mean 
value substitution, but this improvement highly depends on the distri-
bution of the data. Hence, these investigations reveal that none of the 
state-of-the-art imputation techniques could address block-wise missing 
data. 

To emphasize the difficulty of multiclass classification, the accuracy 
of binary classification, which has been a focus of AD related research 
for many years (Xiang et al., 2013; Gray et al., 2013), is provided in 
Tables 3–7. These results highlight that even though classification of 
subjects between two classes at a time provides higher accuracy, F-score, 
precision and recall in almost all the cases (AD vs CN, CN vs EMCI, EMCI 
vs LMCI, and LMCI vs AD), these types of classification lack as expected 
the generalization ability for real-world scenarios when an unseen 
sample data could belong to any of the four groups of (AD, LMCI, EMCI, 

CN). Four-way or multiclass classification is hence more desirable and 
more realistic, but much more challenging especially when dealing with 
heterogeneous multimodal dataset as the one considered here. 

From the results summarized in Tables 3–7, it can be observed that 
gradient boosting (GB) consistently outperformed the other two algo-
rithms of RF and SVM by at least a 2% improvement in accuracy, while 
maintaining the highest precision and recall scores. Moreover, it is 
observed that RF and SVM methods could not reach similar performance 
even if augmented with the most advanced imputation methods. The GB 
performance also does not change noticeably when paired with these 
imputation techniques, given that the GB method is designed to address 
this issue innately. 

In our study, although GB performed only slightly better than other 
methods (2% higher accuracy), it holds perhaps the greatest promise 
because of its versatility, allowing it to assume simpler, and more 
interpretable forms, such as component-wise boosting and the ability to 
incorporate automatic predictor selection. This study also provides ev-
idence that imputation cost in terms of computational overhead is more 
realistic when the percentage of missing values is under 40% with the 
pattern of missing data assumed random. 

All algorithms evaluated in this study are robust and successful when 
considering large feature sets. However, SVM works well for smaller 

Table 4 
Binary Classification of the Control Normal vs Early Mild Cognitive Impairment (CN vs EMCI) * .  

Classifier Gradient Boosting Support Vector Machine Random Forest 

Imputation tech Accuracy Precision Recall Accuracy Precision Recall Accuracy Precision Recall 

KNN 70.28 70.54 67.20 78.18 77.39 77.01 72.01 70.14 70.11 
Soft Impute 79.07 76.79 76.27 76.91 75.19 75.15 73.71 72.39 72.47 
Matrix Factorization 80.23 77.21 77.21 76.54 73.45 73.44 75.85 73.54 73.28 
SVD 80.19 79.00 79.51 76.08 74.54 72.88 74.97 73.72 73.94 
Mean 80.93 79.67 79.9 76.96 75.93 76.22 75.56 73.91 74.33  

Table 5 
Binary Classification of the Early vs Late Mild Cognitive Impairment (EMCI vs LMCI) * .  

Classifier Gradient Boosting Support Vector Machine Random Forest 

Imputation tech Accuracy Precision Recall Accuracy Precision Recall Accuracy Precision Recall 

KNN 83.19 81.32 81.98 83.13 79.11 80.34 79.98 78.45 79.28 
Soft Impute 82.75 79.53 80.71 82.42 81.72 82.34 83.56 80.67 81.63 
Matrix Factorization 85.12 81.14 82.16 77.35 76.66 77.44 81.55 79.73 79.54 
SVD 85.81 81.12 82.33 79.12 77.65 79.29 81.61 80.13 80.26 
Mean 85.84 82.22 82.40 81.38 81.20 82.4 83.24 80.74 81.74  

Table 6 
Binary Classification of the Late Cognitive Impairment Vs Alzheimer (LMCI vs AD) * .  

Classifier Gradient Boosting Support Vector Machine Random Forest 

Imputation tech Accuracy Precision Recall Accuracy Precision Recall Accuracy Precision Recall 

KNN 73.05 67.24 69.53 65.55 46.44 64.07 73.92 70.78 72.2 
Soft Impute 74.84 71.08 72.42 69.92 47.79 68.40 73.45 69.98 71.4 
Matrix Factorization 73.84 70.87 71.81 66.25 43.58 63.97 72.32 68.31 70.2 
SVD 74.23 70.42 71.34 69.32 46.75 69.47 74.63 72.46 72.6 
Mean 75.23 73.16 73.35 70.12 44.35 66.87 74.59 71.67 72.29  

Table 7 
Binary Classification of the Control Normal Vs Alzheimer (CN vs AD) * .  

Classifier Gradient Boosting Support Vector Machine Random Forest 

Imputation tech Accuracy Precision Recall Accuracy Precision Recall Accuracy Precision Recall 

KNN 93.30 91.54 91.14 91.82 90.78 90.24 92.77 90.52 90.14 
Soft Impute 91.67 91.36 91.07 90.89 91.02 91.08 91.28 89.61 89.83 
Matrix Factorization 91.41 91.32 91.34 91.84 90.84 90.18 90.74 90.74 90.85 
SVD 90.90 90.88 90.29 90.57 90.61 90.75 89.81 89.15 89.18 
Mean 93.40 92.37 91.44 91.85 90.11 89.54 92.71 90.21 90.12  
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number of observations. RF, on the other hand, is preferable for large 
non-normalized datasets. SVD and KNN use the correlation structure of 
the data and KNN uses the Euclidean distance to measure similarity and 
profile most related observations to estimate the missing values. These 
approaches will fail to find the most similar profile when it comes to 
outliers. This flaw can be resolved with scaling or using log over ob-
servations. In addition, although the superiority of SVM against other 
machine learning algorithms in terms of accuracy has been reported in 
many studies, this study shows that GB achieved higher performance in 
ADNI dataset with its inherent capability of managing the missing 
values. RF and GB are also quite robust with respect to collinearity. 
However, SVM alleviates the multi collinearity problem via regulariza-
tion, where in RF, it is alleviated via choosing a random subset of fea-
tures for each tree. 

5. Conclusion 

In this paper, we presented a comparative study of several methods 
for the estimation of missing values in the largest heterogeneous dataset 
pulled from various longitudinal studies and cites. We discussed the 
difficulty of classification in the inherent presence of missing values in 
longitudinal studies especially when dealing with a multimodal het-
erogeneous dataset. Of the different state-of-the-art algorithms imple-
mented in this study, Gradient Boosting algorithm achieved the best 
performance when dealing with multiclass classification involving all 4 
groups (CN, EMCI, LMCI and AD). The GB method has outperformed 
SVM and Random Forest algorithms. All the classifiers have been 
coupled with four advanced imputation techniques including KNN 
impute, Matrix Factorization, SVD, and Soft Impute and they have been 
utilized to classify the different stages of AD. When coupled with 
imputation techniques, Random Forest was the most consistent for 
improving accuracy through all percentages of missing data, followed by 
SVM up to 60% missing data; but both failed at the 80% and more of 
missing data. Despite the contribution of the imputation techniques in 
missing value estimation in data with low percentage of the random 
missing data, all the algorithms fail to perform well in high levels of 
missing data. Moreover, in the presence of block-wise missing data 
patterns, where a particular modality is completely missing for so many 
subjects, these imputation methods are not as helpful. While many 
studies so far focused on binary classification of AD, we went further in 
performing multiclass classification while contending with the missing 
data challenge inherent to longitudinal studies. 

Moreover, we also provide results of the different binary classifica-
tions as well for comparative purposes and for estimating the effect of 
missing data on such binary classification in contrast to multiclass 
classification. The imbalanced dataset and insufficient samples in each 
group of subjects imposed a new constraint on the current classification 
problem. We tried to tackle this issue by incorporating the data samples 
from longitudinal studies and provided effective ways to augment the 
dataset. In future work, we are planning on improving the current 
multiclass classification accuracy with application of newer techniques 
such as the Optimal Margin Distribution (Zhang and Zhou, 2019) in 
incomplete datasets, even in the presence of block-wise missing data 
patterns, and applying new deep learning techniques such as Long Short 
Term Memory for handling missing data (Aghili et al., 2018; Li et al., 
2019). 
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